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Abstract—We exploit historical data on planned highways, railroads, and
exploration routes as sources of exogenous variation in order to estimate
the effect of interstate highways on regional innovation: a 10% increase in
a region’s stock of highways causes a 1.7% increase in regional patenting
over a five-year period. In terms of the mechanism, we report evidence
that roads facilitate local knowledge flows, increasing the likelihood that
innovators access knowledge inputs from local but more distant neighbors.
Thus, transportation infrastructure may spur regional growth above and
beyond the more commonly discussed agglomeration economies predicated
on an inflow of new workers.

I. Introduction

HE literature linking transportation infrastructure to

growth focuses on agglomeration economies as the
mechanism. We report evidence that highlights a different
mechanism. In addition to facilitating the flow of human cap-
ital into cities (agglomeration), transportation infrastructure,
such as interstate highways, lowers the cost of knowledge
flows within regions between local innovators. This finding
is important because it sheds light on the black box of knowl-
edge spillovers that lie at the heart of innovation and growth
in the macroeconomic literature (Romer, 1986; Aghion and
Howitt, 1992; Acemoglu & Akcigit, 2012).

One of the most important features of knowledge
spillovers is that they are localized. Starting with the seminal
work of Jaffe, Trajtenberg, and Henderson (1993), a number
of studies have documented that spillovers are constrained
by geography. This may explain some of the variation in
productivity across regions. Moretti (2011) documents that
after adjusting for skill composition, average wages in the
highest- and lowest-paying U.S. metropolitan areas differ
by approximately a factor of 3. Such dispersion is also evi-
dent when one compares innovation outcomes across regions
(Agrawal et al., 2014; Carlino & Kerr, 2014). Silicon Valley
and Boston are popular examples of outlier regions, signif-
icantly more productive than others in terms of innovation.
Despite the prominence of such regional disparities, very lit-
tle is known about the features of the economic and physical
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environment or the policy tools that affect knowledge flows
and trigger economic growth through innovation.

One of the main policies that local governments imple-
ment to spur regional economic growth is the provision of
infrastructure that reduces local transportation costs. Trans-
portation infrastructure such as roads may have an impact
on regional productivity through their effect on employ-
ment, private investment, and the returns to schooling. By
increasing the circulation of people in a region, they are also
likely to facilitate knowledge diffusion and spillovers. We
illustrate this channel with an example in figure 1. The five
largest knowledge-flow corridors in Boston (as measured by
within-MSA citations from 1988 patents) largely coincide
with the topology of the city’s highway network, suggesting
that roads may affect knowledge flow patterns. The effect of
roads on knowledge creation and diffusion is the focus of
this project.

Transportation infrastructure represents a large portion of
the U.S. economy. The estimated value of the U.S. road
capital stock is roughly $5 trillion (U.S. Bureau of Trans-
portation Statistics, 2010), and about 20% of the income of
the median U.S. household is devoted to road transporta-
tion (Duranton & Turner, 2012). Despite the magnitude of
these investments, the impact of transportation infrastructure
on knowledge creation and diffusion has been overlooked
by the innovation literature. We aim to address this here.
Our research provides insight into policies aimed at enhanc-
ing the flow of knowledge within cities. Furthermore, our
findings offer insights for managers who make location and
technology strategy decisions because regional knowledge
flows are key determinants of firm survival and competitive
advantage.

A major identification challenge in estimating the effect
of roads on innovation is the simultaneous determination
of transportation infrastructure and regional technological
development. For example, regional economic growth may
boost local innovation and at the same time may induce
local governments to invest in infrastructure. To address
this problem, we follow a growing literature in urban eco-
nomics that focuses on the U.S. interstate highways system
and exploits instrumental variables for transportation infra-
structure (Baum-Snow, 2007; Duranton & Turner, 2012;
Duranton, Morrow, & Turner, 2014). While interstate high-
ways affect local circulation of people and goods, they
are predominantly built with nonlocal goals. Compared to
other local transport infrastructure, such as local roads and
subways, their construction is less likely correlated with
regional economic shocks that confound empirical estima-
tion. Building on Duranton and Turner (2012), we consider
three instruments for the presence of highways. The first is
based on the 1947 plan of the U.S. interstate highway sys-
tem. The second is derived from a map of the U.S. railroad
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FIGURE 1.—MAIN KNOWLEDGE-FLOW CORRIDORS OF BOSTON
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This figure graphically represents five of the largest within-region knowledge corridors in Boston in 1988. We identify these corridors by collecting all patents issued in 1988 where the first inventor is in the Boston
MSA and finding all citations that were made to patents where the first inventor was also in the Boston MSA (there are 178 cities/towns within the Boston MSA). We did not examine within-city citations (e.g.,
Lexington-Lexington). To identify the largest corridors, we aggregate citations to the city-city dyad level (e.g., Worcester-Framingham).

network at the end of the nineteenth century. The third is
based on maps of routes of major exploration expeditions of
the United States from 1528 to 1850.

We find that a 10% increase in interstate highways leads
to a roughly 1.7% increase in innovation as measured by
patenting activity in the region. This is a large effect, compa-
rable to more than a 3% increase in regional corporate R&D
investments. We show that the results are similar using met-
ropolitan statistical area (MSA) or MSA technology class as
the units of analysis and that estimates are robust to the inclu-
sion of a large set of control variables that explain persistent
productivity differences across regions. We do not find evi-
dence of negative externalities of the stock of highways in
one region on innovation in neighboring regions. Moreover,
the impact of transport infrastructure does not appear to
decline with the diffusion of information and communication
technologies.

In principle, there are a number of mechanisms through
which transportation infrastructure may affect the creation
and diffusion of knowledge. We highlight one particu-
lar channel through which roads affect innovation: local
within-region knowledge flows. Specifically, we show that

in regions where the stock of transportation infrastruc-
ture is larger, innovators build on local knowledge that is
geographically more distant. Research in urban economics
has emphasized that transportation infrastructure generates
regional growth through agglomeration economies, typically
modeled as an inflow of new workers (Duranton & Turner,
2012). An important feature of the channel that we highlight
is that it does not require an influx of new innovators. Our
findings are robust to focusing on a sample of nonmover
inventors whose locations do not change during the period
of our study. This reinforces our view that transportation
infrastructure facilitates the circulation of local knowledge
even in the absence of an inflow of new labor, the mechanism
typically linked to agglomeration forces.

Our analysis documents a greater propensity to build on
more distant local knowledge in regressions with regions
as the unit of analysis (the standard approach in the urban
economics literature), as well as in patent-level regres-
sions (the standard approach in the innovation literature).
At the disaggregated patent level, we show that, condition-
ing on the distance between two inventors located in the
same region, the probability of a citation between two of
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their patents increases with the stock of highways in the
region.

We also provide additional indirect evidence supporting
the idea that roads increase local knowledge flows. First, we
show that roads have a greater impact on innovation in fields
where the technology frontier shifts more quickly such that
rapid access to new knowledge is more valuable. Second, we
show that the effect of transportation infrastructure is larger
in regions characterized by the presence of star inventors
who generate more significant spillovers. Third, we show
that highways have a larger impact on innovation in regions
characterized by low density where inventors are likely to be
more spread out. Finally, we show that large firms’ innova-
tion is less sensitive to the provision of highways, consistent
with the idea that larger firms are more likely to build on
knowledge produced within their own boundaries and thus
rely less on that produced by their neighbors.

We conclude with an illustrative quantitative estimation.
We develop a simple structural model in which transporta-
tion infrastructure affects productivity through two distinct
channels. The first is an agglomeration force: roads increase
the local supply of labor, which increases labor productivity.
The second is a nonagglomeration knowledge channel: roads
allow greater patenting because they facilitate knowledge
flows even when the supply of labor is fixed. Calibration
of the model suggests that about 20% of the impact of
roads on labor productivity may be due to nonagglomeration
channels.

II. Related Literature

Our paper is connected to the literature on the determi-
nants of regional innovation and the impact of transportation
infrastructure on regional growth.

Building on seminal work by Jaffe et al. (1993) and
Feldman (1994), the regional innovation literature identi-
fies a number of factors that may increase innovation in
a geographic area by affecting the localization of knowl-
edge spillovers. For example, Feldman and Audretsch (1999)
show that the diversity of economic activities in a region
better promotes innovation. This provides support to Jacobs
(1969), who argues that the exchange of complementary
knowledge across industries is central to the creation of new
economic knowledge and thus growth. Agrawal, Kapur, and
McHale (2008) provide evidence that social/ethnic prox-
imity substitutes for geographic proximity in terms of its
influence on regional knowledge flow patterns, suggest-
ing that the dispersion of socially proximate individuals
maximizes regional innovation. Kerr and Kominers (2015)
study how the shape of spatial clusters of firms depends on
agglomerative forces and interaction costs. Catalini (2013)
provides evidence that microgeographic forces also affect
idea recombination and the direction of inventive activity.

In terms of the effect of industrial organization on regional
innovation, Agrawal and Cockburn (2003) report evidence
in support of the anchor tenant hypothesis that large, local,
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R&D-intensive firms have a positive impact on regional
innovation. Agrawal et al. (2014) extend this work, show-
ing that local innovation is affected by the organization of
R&D manpower in the region and, in particular, that inno-
vation output is higher in regions that include not only large
R&D-intensive firms but also small ones that thicken the
market for ancillary services, thereby lowering the cost of
spin-outs.!

The emerging urban economics literature studies the
impact of investments in transportation infrastructure on
the evolution of metropolitan areas (Redding & Turner,
2015). Fernald (1999) is the first paper that tries to identify
the causal impact of infrastructure on regional productivity.
Focusing on the differential impact of highways on produc-
tivity growth in industries that have different levels of vehicle
intensity, he shows that industries with a lot of vehicles
benefited disproportionately from road building. He inter-
prets this finding as suggestive of the positive impact of
changes in road stock to regional productivity. Chandra and
Thompson (2000) study the impact of highways on non-
metropolitan counties and regions. They show that highways
have a differential impact across industries and affect the
spatial allocation of economic activity. Baum-Snow (2007)
exploits the planned proportion of the interstate highway sys-
tem as a source of exogenous variation to estimate the impact
of transportation infrastructure on suburbanization. He finds
that one new highway passing through a central city reduces
its population by about 18%. Baum-Snow (2013) exploiting
the same instrument, shows that the construction of high-
ways causes a large and significant job displacement in city
centers but has only a minor impacts on jobs in the suburbs.

Duranton and Turner (2012) exploit interstate highway
system plans, railroads, and exploration maps as instru-
ments to study the impact of highways on regional growth.
They find that a 10% increase in highway stock in a city
causes about a 1.5% increase in employment over a twenty-
year period. Duranton, Morrow, and Turner (2014) study
the impact of interstate highways on the level and compo-
sition of trade for U.S. cities. They find that highways have
no effect on the total value of exports and that cities with
more highways specialize in sectors producing heavy goods.
Finally, Ghani, Goswami, and Kerr (2016) show that the
Indian highway network had a strong impact on the growth
of manufacturing activity.

III. Data

We follow Agrawal et al. (2014) in constructing our sam-
ple and begin with the set of 268 metropolitan statistical

'In terms of government policies, Marx, Strumkey, and Fleming (2009)
show that regional noncompete regulations affect inventor mobility and
knowledge spillovers. Belenzon and Schankerman (2013) show that local
policies can promote commercial development and diffusion of university
innovations. Galasso, Schankerman, and Serrano (2013) show that state-
level taxes have a strong impact on knowledge diffusion through the decision
to trade patent rights.
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areas (MSAs) defined in 1993 by the U.S. Office of Man-
agement and Budget and the set of six one-digit tech-
nology classes described in Hall, Jaffe, and Trajtenberg
(2001).

We obtain information on U.S. patenting activity and on
the affiliation and location of patenting inventors in a region
from the U.S. Patent and Trademark Office (USPTO) data.
While these data are complete and detailed, two key qual-
ifications should be kept in mind. First, not all inventions
are patented. Although this presents a significant limitation
to these data, the innovation literature has shown that tech-
nologies with greater impact on social welfare and economic
growth are more likely to be patented (Pakes & Griliches,
1980). Second, the coding of inventor location, affiliation,
and identity is likely to generate random measurement error
in our constructs.

Asin Agrawal et al. (2014), we use inventor address infor-
mation to assign a patent to an MSA, exploiting the U.S.
National Geospatial-Intelligence Agency data set to match
cities and townships to counties and, ultimately, MSAs. If
a patent has at least one inventor from a particular MSA,
we increment the counter for that MSA by 1. Thus, a
patent with three inventors located in three different MSAs
increments the patent counter for each of those MSAs by
1. However, if all three inventors are located in the same
MSA, then the counter for that MSA is incremented by
only 1.2

We construct our measures using all patents with at least
one inventor with a U.S. address. We exclude patents that
cannot be attributed to an MSA (due to incomplete address
information or a location outside an MSA) and patents
assigned to universities and hospitals. While the USPTO is
the original source of our patent data, we complement these
data with classification data from the NBER (technology
classification, assignee name).

We measure innovative activity, our main dependent
variable, using a citation-weighted count of U.S. patents:

Weighted Patents,, . ,: The forward citation weighted
sum of distinct patents with primary technology clas-
sification ¢ and application year ¢+ where at least one
inventor is located in MSA m

Patent citations identify prior knowledge on which a
patent builds, and prior literature (starting with Pakes
& Griliches, 1980) has often employed the number
of forward-citations received by a patent as an indi-
rect measure of patent value. We also consider an
unweighted patent count as an additional innovation
metric:
Patents,, .,: The number of distinct patents with pri-
mary technology classification ¢ and application year ¢
where at least one inventor is located in MSA m

2 Agrawal et al. (2014) show that differences in the variables are negligible
if they are constructed using only data from the first inventor.

THE REVIEW OF ECONOMICS AND STATISTICS

Our main explanatory variable is the total number of
kilometers of interstate highway in the region in 1983 con-
structed from the Highway Performance and Monitoring
System data, extensively described in Duranton and Turner
(2012). All of our results are robust to using an alternative
lane-weighted measure of highway stock.

Following Agrawal et al. (2014), we construct variables
for the number of inventors in 1983, 1978, and 1973 at the
MSA and MSA class levels. As additional control variables,
following Duranton and Turner (2012), we use the loga-
rithms of MSA historical population levels. We also exploit
a number of variables describing the physical geography of
MSASs as controls. Burchfield et al. (2006) show that the
spatial structure of a region is strongly shaped by the avail-
ability of groundwater, so we exploit the share of each MSA’s
land that overlays an aquifer. Following Duranton and Turner
(2012), we also use controls for MSA elevation, rugged-
ness of MSA terrain, and MSA climate (heating and cooling
degree days). We exploit a variety of sociodemographic vari-
ables from the 1980 census for each MSA: the share of poor
population, the share of college graduates, the share of pop-
ulation employed in manufacturing, and mean income. We
also employ a measure of housing segregation computed
by Cutler and Glaeser (1997). In some regressions, we use
indicator variables for each of the nine census divisions.

Finally, our analysis of local knowledge flows calculates
the distances between cities/towns within an MSA. For each
city, we identify its centroid geographic coordinates from
the U.S. Geological Survey and calculate distances between
cities using the great circle method as in Singh and Marx
(2013).

IV. Empirical Framework

Our main econometric model focuses on the relationship
between measures of innovative activity Y,,.j9s3 in MSA
class m, ¢ in 1988, and the level of interstate highway in MSA
m in 1983, Highway,, 19g3. Our main specification takes the
following form,

log Yyc,1088 = a + Blog Highway,, 19083 + Y 10g Yy, . 1983
+ 0Xpe + €mcs (D

where Y, . 1983 is the innovation level in 1983 and X, . is a
vector of additional controls.3

This empirical specification is consistent with a simple
model in which the deterministic innovation level in an
MSA, K/, is related to the level of highways, R;, by the
following relationship: K;" = AR{. The rate of innovation
adjustment depends on how far out of steady state a region
is. If we define the adjustment as K,.s = K" YK with

3 Lagged dependent variable models are common in the innovation litera-
ture because knowledge is a cumulative process and it is natural to consider
current knowledge as an input for future knowledge (Aghion & Howitt,
1992). Our results are robust to dropping the lagged dependent variable
from the model.
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0 < y < 1, then patenting in period ¢ + 5 will be equal to
K45 = BRPKY, where p = a(1 — y) and B = A'~Y. Taking
logs, we obtain the estimated regression (1). The parameter
of interest is , which in this simple model describes the rate
at which knowledge creation responds to highway provision.
More specifically, an unbiased estimate of § answers the fol-
lowing question: Does the level of MSA highway stock in
1983 affect innovation growth during the period 1983—-1988?
Notice that equation (1) can be rewritten as

log Yy.c,1988 — 10g Yy, 1983
= o + B log Highway,, 1983 + (y — 1) 10g Yy, 1983
+ 060X + €ne-

Therefore, there is no loss of generality in interpreting § as a
coefficient linking the 1983 Highway level with innovation
growth for the period 1983 to 1988.4

The main empirical challenge in estimating equation (1)
is the possible correlation between unobservables, €, ., and
the level of highways in a region. For example, the local
government may react to an economic downturn by building
more roads, thus generating a negative correlation between
roads and innovation. In this case, OLS estimates would
underestimate the causal impact of highways on innovation.
To address such a concern, we exploit three instrumental
variables that we discuss in detail in section IVA.

A. Instrumental Variables

We exploit three instrumental variables (IVs) constructed
using archival data on historical transportation infrastructure.
While a number of studies in the urban economics literature
use historical data as a source of exogenous variation (Baum-
Snow, 2007; Duranton & Turner, 2012; Duranton et al.,
2014), this empirical approach is novel in the entrepreneur-
ship and innovation literature. The only exception we are
aware of is Glaeser, Kerr, and Kerr (2012), who exploit
historical mines as an instrument for entrepreneurship.

To be a valid instrument, a historical variable must not
only be a good predictor of the level of interstate highways
in 1983 but also be orthogonal to the structural equation error
term. We now describe the historical data and discuss their
validity as instrumental variables. All three instruments were
constructed by Duranton and Turner (2012).

The 1947 plan of the interstate highway system. Our first
instrumental variable is a measure of the total number of
kilometers of highway planned at the national level in 1947.

4Model (1) differs from difference-in-differences estimators typically
used in the innovation literature. First, the treatment variable, R, is a continu-
ous variable and not a dummy. Second, because our sample covers only two
periods, we cannot test the assumption of common pretrends in knowledge
creation between cities with different levels of highways in 1983. Nonethe-
less, instrumenting Highway; g3 allows us to remove the bias generated by
noncommon trends and identify the causal effect of highways on innovation.
Therefore, the interpretation of our estimates is not substantially different
from the typical interpretation in a difference-in-difference model.
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Duranton and Turner (2012) construct this variable from a
digital image of the 1947 highway plan for which they calcu-
late kilometers of interstate highway in each MSA. Many of
the highways planned in 1947 were ultimately built, and the
correlation between log 1983 interstate highway kilometers
and log 1947 planned highway kilometers is 0.62.

The orthogonality of this instrument relies on the fact
that the 1947 proposal was a myopic plan, based on the
defense needs and economic conditions of the mid-1940s
that were likely to be uncorrelated with innovation activity
in the 1980s. Specifically, the goal of the 1947 plan was
to “connect by routes as direct as practicable the princi-
pal metropolitan areas, cities and industrial centers, to serve
the national defense and to connect suitable border points
with routes of continental importance in the Dominion of
Canada and the Republic of Mexico” (U.S. Federal Works
Agency, Public Roads Administration, 1947 press release,
cited in Michaels, 2008). Historical evidence discussed in
Duranton et al. (2014) confirms that the 1947 highway plan
was drawn to this mandate. Moreover, Duranton and Turner
(2012) show that 1947 planned highways are uncorrelated
with population growth in the 1940s and 1950s, confirming
that planners in 1947 tried to connect population centers, not
anticipate future growth.

The instrumental variable estimation of equation (1)
requires orthogonality of the dependent variable and the
instruments conditional on control variables, not uncondi-
tional orthogonality. As Duranton and Turner (2012) point
out, this is an important distinction. For example, MSAs
with more roads in the 1947 plan may be larger and thus
have more inventors than MSAs receiving fewer. If inno-
vation growth depends on the number of inventors in the
MSA and there is persistence in the R&D labor force, then
the 1947 planned highway system may predict innovation
growth directly through its ability to predict the R&D labor
force in 1983. To address this concern and reduce the threat
to the validity of the instrument, we follow the urban eco-
nomics literature and include in the estimation a large set of
appropriate controls (in particular, the historical number of
inventors and population levels).

Railroad routes in 1898. The second instrument is based
on the map of major railroad lines from about 1898 (Gray,
1989). Duranton and Turner (2012) calculate the kilometers
of 1898 railroad tracks contained in each MSA by converting
this map into a digital image. The correlation between log
1983 interstate highways kilometers and log 1898 railroad
kilometers is equal to 0.53. Such high correlation is driven by
the fact that old railroads are a natural location for modern
roads because they do not require leveling and grading a
roadbed.

The U.S. rail network was developed in the middle of an
industrial revolution and immediately after the Civil War. At
that time, the U.S. economy was smaller and more agricul-
tural than the one of the 1980s, and this substantially reduces
the concern of correlation between railroads in 1898 and



422

technology shocks in the 1980s. As discussed in Duranton
and Turner (2012) and Duranton et al. (2014), railroads were
developed mainly to transport grain, livestock, and lumber,
and it is unlikely that such a flow of agricultural commodities
was correlated to innovation activity in the 1980s. Moreover,
railroads were typically constructed by private companies
that expected to make profits in the short and medium terms.

The validity of the instrument again hinges on its orthog-
onality conditional on the control variables. A possible
concern is that cities with more kilometers of railroad track
in 1898 were more productive, and persistent productivity
differences may be correlated with greater innovation in the
1980s. To address this concern, we will show that our results
are robust to including direct measures of productivity (e.g.,
historical growth in the number of inventors, income per
capita, the share of adult population with a college degree).

Routes of major exploration expeditions, 1528—1850.
The final instrument is an index that measures the number
of routes of major exploration expeditions that crossed each
MSA. Duranton and Turner (2012) digitize a number of maps
from the National Atlas of the United States of America (U.S.
Geological Survey, 1970) reporting routes of major expedi-
tions of exploration that occurred during the time period
1528 to 1850. From each map, they count 1 kilometer for
each pixel crossed by an exploration route in each MSA and
then construct their measure by summing those counts across
all maps.

The correlation between the exploration route index and
1983 kilometers of interstate highway is equal to 0.43. Such
correlation is driven by the fact that good routes for explorers
moving on foot, horseback, or wagons are likely to be good
routes for cars.

Exogeneity of this variable rests on the assumption that
explorers’ choices of routes are not related to anything that
affects the innovation activity of regions a few centuries
in the future, save the suitability of a place for roads. As
Duranton et al. (2014) reported, the motivations for these
expeditions were very different: searching for gold, estab-
lishing fur trading territories, finding emigration routes to
Oregon, or expanding the U.S. territory toward the Pacific
Ocean.

There is a concern that exploration routes may be more
prominent in the presence of rivers or lakes that in turn may
generate persistent differences in regional productivity. To
address this issue, we include in our regressions a number
of direct controls for the geography of the region (e.g., the
share of MSA land that overlays an aquifer, MSA elevation
range, an index of terrain ruggedness, heating and cooling
degree days).

B.  Summary Statistics

We focus on two units of analysis. First, we study cross-
region variation and use MSAs as our unit of analysis (e.g.,

THE REVIEW OF ECONOMICS AND STATISTICS

TABLE 1.—SUMMARY STATISTICS

Unit of Analysis Variables Mean SD

MSA MSA Weighted Patentsiogg 4,438.53 12,774.52
(N =220) MSA Patentsyogg 228.69 609.99
MSA Weighted Patentsiogs 2,660.96 8,154.20

MSA Patentsog; 165.00 482.13

MSA Inventorsog;3 390.05 1,175.62

MSA Highwaygs (km) 247.30 300.36

1947 Planned Highways (km) 118.46 129.47

1898 Railroads (km) 290.19 301.66

1528-1850 Exploration route index 2,990.63 4,277.54

MSA Class MSA Class Weighted Patentsogg 993.04 2,386.91
(N =814) MSA Class Patentsogg 50.93 116.41
MSA Class Weighted Patents,og3 587.63 1,479.83

MSA Class Patentsyog3 36.44 92.85

MSA Class Inventorsiogs 105.42 281.59

Rochester, New York). Then, we turn our attention to cross-
region and technology variation and use MSA class as our
unit of analysis (e.g., Rochester, New York—electronics).
Following Duranton and Turner (2012), we drop MSAs with
no interstate highways in 1983. We also drop MSA classes
with no inventors in 1983. This leaves us with 220 observa-
tions in the MSA sample and 814 observations in the MSA
class sample.

Table 1 reports summary statistics for the sample
employed in the MSA level analysis. The average MSA in
our sample generates 165 patents in 1983 and 229 patents
in 1988, an average annual growth rate of 6.7% per year. In
terms of citation-weighted patents, the average MSA in our
sample generates 2,661 cites in 1983 and 4,438.5 cites in
1988, reflecting an average annual growth rate of 7.8% per
year. The average MSA has roughly 247 kilometers of inter-
state highway and approximately 390 inventors in 1983. We
similarly report key descriptive statistics for the MSA class
unit of analysis.

V. Regional Innovation Growth

We start our analysis by documenting the strong positive
impact of regional highway stock on regional innovation.
Our first set of results confirms the positive effect of roads on
economic growth unveiled in Duranton and Turner (2012).
The key difference with their analysis is that we look at
economic growth through the lens of innovation outcomes
whereas Duranton and Turner (2012) exploit employment
data.

Columns 1 and 2 in table 2 contain our first set of results,
which show a robust positive association between highways
and innovation in MSA-level regressions. We estimate these
models using OLS with robust standard errors. In column
1, the dependent variable is the logarithm of the citation-
weighted patent count or, equivalently, the logarithm of total
forward citation count for issued patents applied for by all
inventors in the MSA in the year 1988. Column 1 shows a
positive correlation between interstate highway kilometers
in 1983 and the level of innovation in 1988, controlling for
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TABLE 2.—ROADS ARE ASSOCIATED WITH MORE CITATIONS AND PATENTS: OLS REGRESSIONS

(1 3) )
Unit of Analysis MSA MSA Class
Dependent Variable logCites;y, 1988 logPatents,, 193 logCitesy, 1988 logPatents,, . 1983
logHighway,y, 1983 0.130** 0.097** 0.250%** 0.149***
(0.064) (0.038) (0.082) (0.043)
logCites, 1983 0.571%*
0.114)
logPatents, 1983 0.762***
(0.073)
IOgCl‘teSm’C,1933 0.323%%*
(0.052)
logPatents,,,,C_lgm 0.517***
(0.048)
Inventor controls v v v
Geography controls v v v
Class fixed effects v v
Observations 220 220 814 814
R? 0.878 0.940 0.715 0.861

All specifications are estimated by ordinary least squares. logCites,, , refers to the citation-weighted count of patents applied for (and subsequently granted) in period ¢ in MSA m. logPatents,, , refers to the count of
patents applied for (and subsequently granted) in period 7 in MSA m. logCites,,, c, t refers to the citation-weighted count of patents applied for (and subsequently granted) in period 7 in class ¢ of MSA m. logPatents,,, c, t
refers to the count of patents applied for (and subsequently granted) in period 7 in class ¢ of MSA m. logHighway,, 1933 refers to the 1983 level of interstate highway kilometers in MSA m. For MSA-level regressions,
Inventor controls include the log of the inventors in the MSA in 1973, 1978, and 1983. For MSA class regressions, Inventor controls include the log of the inventors in the MSA class in 1973, 1978, and 1983 and the
total number of inventors in the MSA in 1983. Geography controls include the share of each MSA’s land that overlays an aquifer, MSA’s elevation, index of MSA terrain ruggedness, and number of MSA heating and
cooling degree days. We add a 1 to all patent, citation, and inventor count variables before taking the log to include observations with values of 0. Robust standard errors clustered at the MSA level are in parentheses.

*p < 0.10, **p < 0.05, ***p < 0.01.

the count of citation-weighted patents in 1983; the num-
ber of inventors in the MSA in 1983, 1978, and 1973; and
a number of MSA geography variables (the share of land
that overlays an aquifer, elevation range, an index of ter-
rain ruggedness, and heating and cooling degree days). The
specification in column 2 is similar to the one in column 1,
but we measure innovation with unweighted patent counts.
Overall, these regressions show a strong, positive correlation
between transportation infrastructure and regional innova-
tion. The magnitude of the coefficient in column 1 shows
that a 10% increase in interstate highway stock is associated
with a 1.3% increase in innovative output. In columns 3 and
4, to account for across-MSA technological heterogeneity,
we move to a more disaggregated level and study the associa-
tion between interstate highways and innovation at the MSA
class level. We cluster standard errors at the MSA level in
these regressions since our main independent variable varies
at the MSA level. Overall, the regressions in columns 3 and 4
confirm at a more disaggregated level the main finding of the
regressions at the MSA level: transportation infrastructure is
positively associated with regional innovation.

The results in table 2 are to be interpreted as correla-
tions between road infrastructure and innovation, not causal
impacts. As we argue above, we expect unobservable factors
to be correlated with both the levels of interstate highway
and innovation in a region for a number of reasons. To
address this endogeneity, we turn to an instrumental variable
estimation.

We examine the correlation between the historical vari-
ables and the stock of interstate highway in 1983, the key
empirical variation exploited in our first-stage regressions.
We report these correlations in table B.1 in the online appen-
dix. The table confirms the results in Baum-Snow (2007)

and Duranton and Turner (2012), showing a large, positive
correlation between the stock of interstate highway in 1983
and the three instruments: 1947 planned interstate highway
kilometers, 1898 railroad kilometers, and the index of explo-
ration routes between 1528 and 1850. The regressions show
how each of these variables is strongly correlated with the
endogenous variable and confirm the correlation when we
include all three instruments. In unreported regressions, we
find that historical infrastructures are a strong predictor of
modern highway stocks for multiple subsets of the sample.
This suggests that the treatment effects we estimate below
represent averages across a broad set of MSAs and thus can
be interpreted as average treatment effects.5

Table 3 presents the IV regressions. In column 1, we
estimate the causal impact of the 1983 level of interstate
highways in the MSA on MSA citations in 1988. The coef-
ficient of 0.244 implies that 10% more interstate highways
in 1983 leads to 2.44% more citation-weighted patents after
five years. The regression controls for historical inventor
levels and geographic variables. Column 2 confirms the
results with unweighted patent counts as measures of inno-
vation. Across all specifications, the first-stage F-statistics
pass the weak instrument test, and the overidentification test
(Hansen’s J-statistic) gives a p-value of roughly 0.20, which
supports the exogeneity of the instruments. Columns 3 and 4
confirm the positive impact of roads on regional innovation
at the more disaggregated MSA-technology-class level.

Across the specifications, IV estimates are larger than the
corresponding OLS coefficients, indicating that endogeneity

5 Specifically, we find that the instruments are statistically significant at
the 1% level in split-sample regressions across population quartiles, census
division dummies, mean income quartiles, and share of employment in
manufacturing quartiles.
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TABLE 3.—ROADS CAUSE AN INCREASE IN CITATIONS AND PATENTS: IV REGRESSIONS

(e9) 3) )

Unit of Analysis MSA MSA Class
Dependent Variable logCites;y, 1988 logPatents,, 193 logCitesy, 1988 logPatents,, . 1983
logHighway,y, 1983 0.244** 0.170** 0.347** 0.239***

(0.106) (0.080) (0.105) (0.046)
Inventor controls v v v v
Geography controls v v v
Class fixed effects v v
Observations 220 220 814 814
F-statistic 23.22 19.20 22.92 21.79
R? 0.876 0.939 0.714 0.859

All specifications are estimated by two-stage least squares and control for the lagged dependent variables evaluated in 1983. logCites,,, refers to the citation-weighted count of patents applied for (and subsequently
granted) in period 7 in MSA m. logPatents,,, refers to the count of patents applied for (and subsequently granted) in period 7 in MSA m. logCites,,, c, t refers to the citation-weighted count of patents applied for (and
subsequently granted) in period  in class ¢ of MSA m. logPatents,,, c, t refers to the count of patents applied for (and subsequently granted) in period ¢ in class ¢ of MSA m. logHighway,, 1033 refers to the 1983 level
of interstate highway kilometers in MSA m. The endogenous variable logHighwayy 1983 is instrumented with logHighwayPlan,, 1947, 10gRail,, 1303, and logExplorationIndex,,. For MSA regressions, Inventor controls
include the log of the number of inventors in the MSA in 1973, 1978, and 1983. For MSA class regressions, Inventor controls include the log of the number of inventors in the MSA class in 1973, 1978, and 1983
and the total number of inventors in the MSA in 1983. Geography controls include the share of each MSA’s land that overlays an aquifer, MSA elevation, index of MSA terrain ruggedness, and the number of MSA
heating and cooling degree days. We add a 1 to all patent, citation, and inventor count variables before taking the log to include observations with values of 0. Robust standard errors clustered at the MSA level are in

parentheses. *p < 0.10, **p < 0.05, ***p < 0.01.

generates a downward bias. This downward bias is in line
with other studies that investigate the impact of infrastructure
on the economic growth of a region. To explain this differ-
ence between OLS and IV, Duranton and Turner (2012) show
that MS As that experienced negative population shocks tend
to have larger road-building sectors. This suggests that the
bias is driven by governments reacting to low employment
with road-building plans.

The estimated effect is large. Column 2 indicates that a
10% increase in interstate highways in 1983 leads to 1.7%
more patents after five years. Estimates from the econom-
ics of innovation literature suggest an elasticity of corporate
patenting to R&D expenditure close to 0.5 (see Aghion, Van
Reenen, & Zingales, 2013, and Bloom, Schankerman, &
Van Reenen, 2013, for recent estimates). Therefore, a 1.7%
increase in patenting is roughly equivalent to a 3.4% increase
in regional corporate R&D investment.

We exploit these results to perform a few illustrative pol-
icy simulations that estimate the impact of enlarging the
highway system in three representative metropolitan areas.
We focus on one MSA with a large highway network (Los
Angeles, with about 2,000 km of highways in 1983), one
with a medium-size network (Seattle, with about 500 km),
and one with a small network (Madison, Wisconsin, with
roughly 100 km). We consider an increase in the high-
way network of 100 km and 250 km in each of these
metropolitan areas. We report the number of extra patents
predicted by our IV estimates in each of these scenarios
(appendix table B.2). Moreover, by exploiting the figures
reported in Kortum and Lerner (2000) on the R&D expendi-
ture per patent in 1988, we transform each effect into an
equivalent R&D subsidy (i.e., the extra R&D investment
required to generate an equivalent increase in patenting).
These calculations suggest that the effects of transport infras-
tructure on innovation are not trivial. For example, a 100
km increase for the Los Angeles highway system appears
roughly equivalent to a $44 million R&D subsidy. Even in a
small metropolitan area such as Madison, a 100 km increase
in highways is roughly equivalent to a $17 million R&D

subsidy. These estimates are only illustrative and should not
be overinterpreted.

We perform a variety of tests to confirm the robustness
of our main finding. In particular, we show that our baseline
estimates are similar in models without lagged dependent
variable, with state-fixed effects, and with state-class fixed
effects. We also show that results are similar if we remove
the five largest patenting MSAs from the sample. (Details
for these regressions and additional robustness checks are
provided in online appendix tables B.3 and B.4).

Following previous literature, our analysis focuses on the
effect of interstate highways on the growth of innovation
activity in the period 1983 to 1988, which precedes the large-
scale diffusion of the Internet and other information and
communication technologies (ICT). In principle, access to
ICT may amplify or reduce the effect of roads depending on
whether face-to-face interactions and ICT are complements
or substitutes in knowledge production.

In the online appendix, we explore this issue with two
distinct approaches. First, we contrast the magnitude of the
effect across different time periods: 1983—-1988, 1988-1993,
1993-1998, and 1998-2003. While the magnitude of the
effect of transport infrastructures declines over time, the
1983 highway stock appears to have a long-lasting effect
on innovation. For each of the estimates, we cannot reject at
the 5% level that they are equal to our baseline effect. This
evidence supports the idea that the impact of transportation
infrastructure did not disappear in more recent time periods
because of the diffusion of ICT.

Second, we collect data on the adoption of ICT across
the MSAs in our sample. We obtain ICT data from Forman,
Goldfarb, and Greenstein (2002), who construct measures of
Internet adoption from the Harte Hanks Market Intelligence
Survey. In the online appendix, we describe the data, and
in appendix table B.5, we present regressions that include
these internet measures. Our findings on the positive impact
of transport infrastructure on innovation are robust. Coeffi-
cients are statistically and quantitatively similar to those in
the baseline model.
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A. Displacement Effects

The analysis has focused on local effects of transport
infrastructure and does not consider the possibility that inno-
vation can be displaced from one location to another. In
principle, the provision of transport infrastructures can gen-
erate a zero-sum game among regions, with no effect on
aggregate national innovation.

To explore this possibility, we follow Moretti and Wilson
(2014) and extend our baseline model to include spatial lags.
Specifically, we construct a new variable,

I

SpatialHighway;i933 = Zw,-j log(Highwayjios3), 2)
i#]

which is a weighted average of the highway stock in other

MSAs. The weights w;; are the elements of a spatial weight-
ing matrix meant to capture the geographical proximity
I

between pairs of MSAs. They satisfy ) w; = 1 and are

1
constructed using the inverse of the distan#c]e between MSAs’
population centroids.

In table 4, we add this control to our baseline model instru-
menting both the highway stock in an MSA and its spatial lag
exploiting the historical variables. More precisely, we con-
struct spatial weighted averages for the 1947 highway plan,
railroad routes, and exploration expeditions and use them
as instruments for the 1983 highway spatial lag. The coeffi-
cients of the direct effect are robust and stable. We find no
evidence of statistically significant spatial spillovers across
the various specifications. The MSA class level regressions
in particular show that the effect is positive and its magnitude
very small.6

We interpret these findings as suggesting that highways
are unlikely to generate a zero-sum game for national inno-
vation. Intuitively, this may arise because ideas are nonrival
and lower communication or collaboration costs facilitate
enhanced searching and matching among inventors. In other
words, to the extent that a distant idea is more likely to be
shared with an inventor in the focal region due to the pres-
ence of a highway does not diminish that idea’s ability to
also be used by someone else. This is also consistent with
Duranton and Turner (2012), who show that changes in road
infrastructure affect city employment growth by affecting
driving within the city and not through market access, and
with Duranton et al. (2014), who show that a city’s road
network does not affect the total value of intercity trade.

Nonetheless, we cannot fully account for the possibil-
ity that negative displacement effects as well as positive
spillovers, arising from the increased physical availability
of highways, may be present. Conducting such a precise
evaluation of the national impact of local policies is very

6In unreported results, we modify our spatial lag variable to vary at the
MSA-technology-class level as spillovers may depend on the technological
specialization of regions. Results are robust and essentially identical to those
presented in table 4.

425

challenging and requires the estimation of a dynamic gen-
eral equilibrium model of the U.S. economy during our time
period with externalities across regions.”

VI. Local Knowledge Flows

We document a positive causal effect of interstate high-
ways on regional innovation in section V. This finding is in
line with the previous literature that has uncovered a positive
effect of the stock of highways on urban growth (Duranton
& Turner, 2012). In principle, there are many mechanisms
through which transportation infrastructure affects the cre-
ation and diffusion of knowledge. An important economic
channel emphasized in previous research is that trans-
portation infrastructure generates regional growth through
agglomeration economies, typically modeled as an inflow of
new workers (Duranton & Turner, 2012). In this section, we
provide evidence of a different mechanism through which
roads may affect innovation and growth: their ability to ease
the flow of local knowledge, which may serve as an impor-
tant input to local innovation. A key feature of this channel
is that it does not require an inflow of new innovators,
and therefore it is conceptually different from traditional
agglomeration forces.

We look at the impact of highways on knowledge flows
within an MSA. More specifically, we study whether an
increase in the stock of highways affects the way in which
local innovators rely on each other’s knowledge to spur inno-
vation. To this end, for each patent in an MSA class, we
compute the distance between the location of the inventor
and the location of the inventors of patents cited by the focal
patent and located in the same MSA. For each MSA class,
we then compute the average distance between the innova-
tors and their within-MSA cited technologies. The average
distance between a patent and its within-MSA citations in
1988 is 35.6 kilometers (SD 21.7). For regions above the
median level of highways in 1983, the distance is 46.0 kilo-
meters compared to 23.5 kilometers for regions below the
median.

We report regression results illustrating the impact of
interstate highways on within-MSA citations’ distance in
table 5. Each regression controls for the level of patenting
in 1983, the average within-MSA citation distance in 1983,
historical inventor levels, geographic variables, and technol-
ogy field effects. Column 1 shows a strong, positive effect
of highways on citation distance. The estimate indicates that
a 10% increase in 1983 highways causes a 2.3% increase in
the average distance between innovators and the local inputs
cited in their patents. To take into account that distance may
depend on socioeconomic and geographic characteristics of
the MSA, in column 2 we add to our control variables a set

7The research of Kline and Moretti (2014) is an advance in this respect,
with the structural estimation of the aggregate effects of one regional policy:
the Tennessee Valley Authority. Their framework is not adequate for our
data, in which each region is affected by a different policy (i.e., each region
has a different level of road infrastructure).
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TABLE 4.—R0ADS CAUSE AN INCREASE IN LOCAL CITATIONS AND PATENTS, NET OF DISPLACEMENT EFFECTS

(1 2 (3) 4)

Unit of Analysis MSA MSA Class
Dependent Variable logCites,, 1983 logPatents,, 193 logCitesy, 1988 logPatents,, ¢ 1983
logHighway,y, 1983 0.258** 0.172** 0.340*** 0.237***

(0.102) (0.076) (0.104) (0.047)
SpatialHighwaysy, 1983 —-0.326 —0.251 0.080 0.020

(0.449) (0.281) (0.603) (0.331)
Inventor controls v v v v
Geography controls v v v v
Class fixed effects v v
Observations 220 220 814 814
F-statistic 17.33 13.12 16.75 16.35
R? 0.876 0.939 0.714 0.859

All specifications are estimated by two-stage least squares and control for the lagged dependent variables evaluated in 1983. logCites,,, refers to the citation-weighted count of patents applied for (and subsequently
granted) in period ¢ in MSA m. logPatents,,, refers to the count of patents applied for (and subsequently granted) in period 7 in MSA m. logCites,,, c, t refers to the citation-weighted count of patents applied for (and
subsequently granted) in period # in class ¢ of MSA m. logPatents,,, c, t refers to the count of patents applied for (and subsequently granted) in period 7 in class ¢ of MSA m. logHighway,, 1033 refers to the 1983 level of
interstate highway kilometers in MSA m. SpatialHighways, 1983 refers to the spatially weighted Highways measure defined as SpatialHighway,, 19083 = Zf#m Wim log(Highway,, 1083), which is a weighted average of
the highway stock in other MSAs. The weights w;,, are the elements of a spatial weighting matrix meant to capture the geographical proximity between pairs of MSAs. They satisfy Zf#m win = 1 and are constructed
using the inverse of the distance between MSAs’ population centroids. The two endogenous variables logHighway,, 1933 and SpatialHighways,,, 1083 are instrumented with logHighwayPlan,, 1947, 10gRail,, 1303, and
logExplorationIndex,, and these three instruments with their own spatial weights for a total of six instruments. For MSA regressions, Inventor controls include the log of the number of inventors in the MSA in 1973,
1978, and 1983. For MSA class regressions, Inventor controls include the log of the number of inventors in the MSA class in 1973, 1978, and 1983 and the total number of inventors in the MSA in 1983. Geography
controls include the share of each MSA’s land that overlays an aquifer, MSA elevation, index of MSA terrain ruggedness, and number of MSA heating and cooling degree days. We add a 1 to all patent, citation, and
inventor count variables before taking the log to include observations with values of 0. Robust standard errors clustered at the MSA level are in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01.

TABLE 5.—ROADS INCREASE THE GEOGRAPHIC DISTANCE OF LoCcAL KNOWLEDGE INPUTS

(1 (@) 3) “ (%) (6)

Sample All Inventors Nonmoving Inventors
Dependent Variable logSameMSAdistancey, . 1933
logHighway,, 1983 0.228*** 0.217%* 0.242%** 0.111* 0.146*** 0.117**
(0.056) (0.055) (0.082) (0.048) (0.052) (0.066)
Class fixed effects v v v v v v
Inventors’ controls v v v v v v
Geography controls v v v v v v
Census division controls v v v v v v
Socioeconomic controls v v v v
Extra geography controls v v v v
Population controls v v
Observations 814 814 814 495 495 495
R? 0.558 0.564 0.560 0.295 0.312 0.294
F-statistic 21.19 21.57 12.07 23.83 22.84 8.793

The unit of analysis for all specifications is the MSA class. All specifications are estimated by two-stage least squares and control for the lagged dependent variables evaluated in 1983. Columns 1-3 consist of the
full sample; columns 46 include only patents of inventors who did not move between 1983 and 1988. logSameMSAdistance, ., refers to the mean for all patents in the focal MSA m in class ¢ of the distance between
the location of the inventor and the location of the inventors of patents cited by the focal patent and located in the same MSA m. logHighway, 1983 refers to the 1983 level of interstate highway kilometers in the MSA.
The endogenous variable logHighway,, 1983 is instrumented with logHighwayPlan,, 1947, logRail,, 1393, and logExplorationIndex,,. Inventor controls include the log of the inventors in the MSA class in 1973, 1978, and
1983 and the total number of inventors in the MSA in 1983. Geography controls include the share of each MSA’s land that overlays an aquifer, MSA elevation, index of MSA terrain ruggedness, and number of MSA
heating and cooling degree days. Census division controls include dummy variables for each of the nine census division. Socioeconomic controls (from the 1980 census) include the share of the poor population in the
MSA, the share of college graduates, the share of population employed in manufacturing, mean income in the MSA, and a measure of housing segregation computed by Cutler and Glaeser (1997). Extra geography
controls include the square of the share of each MSA’s land that overlays an aquifer, the square of the MSA’s elevation, the square of the MSA’s terrain ruggedness index, and the product of the terrain ruggedness index
and elevation. Population controls include the log of the MSA’s population in 1920, 1930, 1940, and 1950. We add a 1 to all patent, citation, and inventor count variables before taking the log to include observations
with values of 0. The number of usable observations is reduced in columns 4-6 as some MSA classes did not include any nonmoving inventors between 1983 and 1988 or inventors who patented in both 1983 and 1988.
Robust standard errors clustered at the MSA level are in parentheses. *p < 0.10, *¥p < 0.05, **¥p < 0.01.

of additional geographic variables (in particular, nonlinear
effects of the basic geographic measures and interactions).
Despite the very large number of covariates in this speci-
fication, the results are robust. In column 3, we show that
results are similar if we add controls for historical population
levels.

The regressions in columns 1 to 3 show that innovators
increase the distance traveled for local inputs in the presence
of greater highway stock. This effect may arise mechanically
if highway provision increases the dispersion of innova-
tors. But it also may indicate easier access to more distant
local knowledge, which generates greater diffusion of local
knowledge. To better assess the impact of highways on local

knowledge diffusion, in each MSA class, we identify a set of
nonmover MSA inventors. These are inventors active in both
1983 and 1988 who did not change their location over this
five-year period. Columns 4 to 6 present results for this sam-
ple of nonmover inventors. The estimates are qualitatively
and quantitatively similar to those we report in columns 1
to 3. Specifically, these findings show that highway pro-
vision induces nonmover inventors to cite more distant
nonmover local inventors. Overall, the fact that the impact
of highways on citations among nonmover inventors is sim-
ilar to the impact for the overall sample indicates that the
highway effect is not mechanically driven by increasing dis-
persion of innovators but, rather, suggests that transportation
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TABLE 6.—ROADS INCREASE THE NUMBER OF PATENTS THAT BUILD ON LocAL KNOWLEDGE INPUTS
Dependent Variable: logSameMSApatents,, . 1933

@ (@) 3 (C))

Sample All Inventors Nonmoving Inventors
Subsample All Assignees New Assignees All Assignees New Assignees
logHighway g3 0.177** 0.146%** 0.059*** 0.022**

(0.042) (0.036) (0.023) (0.011)
Inventor controls v v v v
Geography controls v v v v
Class fixed effects v v
Observations 814 814 814 814
F-statistic 22.81 22.30 22.84 22.69
R? 0.826 0.821 0.693 0.437

The unit of analysis for all specifications is the MSA class. All specifications are estimated by two-stage least squares and control for the lagged dependent variables evaluated in 1983. Columns 1 and 2 consist of the
full sample, while columns 3 and 4 include only patents of inventors who did not move between 1983 and 1988. The odd-numbered columns include patents assigned to all assignees, while the even-numbered columns
include only assignees who are new to (have never been cited by) the citing inventors. logSameMSApatents,,, c, t refers to the number of patents in MSA class m, ¢ that cite at least one patent in the same MSA m.
logHighway,, 1983 refers to the 1983 level of interstate highway kilometers in the MSA m. The endogenous variable logHighway,,, 1033 is instrumented with logHighwayPlan,,, 1947, 10gRail,, 1808, and logExplorationindex,, .
Inventor controls include the log of the number of inventors in the MSA class in 1973, 1978, and 1983 and the total number of inventors in the MSA in 1983. Geography controls include the share of each MSA’s land
that overlays an aquifer, MSA elevation, index of MSA terrain ruggedness, and number of MSA heating and cooling degree days. We add a 1 to all patent, citation, and inventor count variables before taking the log to
include observations with values of 0. Robust standard errors clustered at the MSA level are in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01.

infrastructure enables innovators to access more distance
local knowledge.

We next investigate the extent to which highways affect
the growth of patents that build on local knowledge. To do
so, we identify all patents that cite at least one patent in
the same MSA class. In table 6, we explore the relationship
between road infrastructure and innovation that builds on
local knowledge in both the full sample and the sample of
nonmover inventors. In addition, we contrast the propensity
to build on local knowledge with the propensity to build
on new sources of local knowledge (i.e., to cite a firm not
cited by previous patents of the inventor). In column 1, we
show that a 10% increase in 1983 highways causes a 1.77%
increase in patents that draw on local knowledge. In column
2, we show that a 10% increase in 1983 highways causes
a 1.46% increase in patents that cite patents in the same
MSA by firms new to the inventors. In columns 3 and 4,
we replicate the results in columns 1 and 2 but using our
nonmover inventor sample. The estimates are qualitatively
similar but smaller in magnitude.

Overall, the results in tables 5 and 6 provide direct evi-
dence that highways shape the propensity of innovators to
rely on local knowledge. Local innovators appear more likely
to rely on new and more distant local knowledge in the pres-
ence of greater transportation infrastructure. This suggests
that an easier flow of local knowledge may be a significant
mechanism through which road infrastructure affects local
growth. Building on this insight, in section VII, we present
an illustrative estimation of a structural model that aims to
quantify the relative importance of highways in terms of tra-
ditional agglomeration forces versus facilitating knowledge
flows in generating productivity gains.

Our analysis has focused on the impact of interstate
highways on local knowledge flows, measured by citations
among inventors located in the same MSA. It is natu-
ral to expect interstate highways to also affect knowledge
exchange between inventors across MSAs. In our regres-
sions, we consider only local knowledge flows because the
analysis of citation patterns within an MSA requires milder

assumptions on the exogeneity of the historical instrumental
variables. To analyze knowledge flows between two MSAs,
we need to assume that our I'Vs are not correlated with future
patent citations between two regions. Railroads, expedition
routes, and interstate highways were built and planned to
connect principal metropolitan areas. In this respect, unob-
served heterogeneity affecting the historical flow of people,
goods, and knowledge between two MSAs may be associated
with the presence of railroads, routes, or planned highways
connecting them and may have a long-lasting impact corre-
lated with future knowledge flow between the two MSAs.
By focusing on local (i.e., within-MSA) knowledge flows,
our empirical analysis rests on the weaker assumption that
the historical instrumental variables are not correlated with
future citation patterns among inventors located in the same
MSA.

A. Patent-Level Analysis

The regressions presented in the previous sections rely on
data aggregation at the MSA or MSA class level, a stan-
dard approach in the urban economics literature. In this
section, following a structure familiar to the economics-of-
innovation literature, we move to patent-level regressions in
order to further study how the provision of transportation
infrastructure affects local knowledge spillovers. This finer
unit of analysis allows us to introduce a large number of addi-
tional explanatory variables measuring characteristics of the
patent, its inventors, and its citations. These additional con-
trols reduce the level of unobserved heterogeneity and limit
the likelihood of violation of the exclusion restriction.

To perform the patent-level analysis, we identify all the
local citations made by granted patents with application
year 1988 (excluding self-citations). This leads to a sam-
ple of 10,776 citations from 1988 patents to other patents
located in the same MSA. Exploiting these data, we follow
two approaches to study local knowledge flows at the patent
level. In table 7, we explore the effect of highways on the
distance of local citations. As in our previous analysis, we
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TABLE 7.—ROADS INCREASE THE GEOGRAPHIC DISTANCE OF LOCAL KNOWLEDGE INPUTS: PATENT-LEVEL ANALYSIS

“
Dependent Variable (1) 2) 3) logDistance,,
logDistance,, logDistance,, logDistance,, other MSAs
logHighway,,, 1983 0.407** 0.431%* 0.085** —0.010
(0.061) (0.061) 0.041) (0.031)
Citing patent class fixed effects v v v v
Cited patent class fixed effects v v v v
Cited patent year fixed effects v v v v
Geography controls v v v
Inventor controls v v
Observations 9,141 9,141 9,141 7,593
R? 0.128 0.143 0.178 0.154
F-statistic 48.82 55.75 8.35 11.44

The unit of analysis for all specifications is the citing patent p-cited patent ¢ dyad. All specifications are estimated by two-stage least squares. The sample consists of all citations made to patents in the same MSA by
patents applied for (and subsequently granted) in 1988. logDistance,, refers to the distance in kilometers between the first inventors of the citing patent p and cited patent . The dependent variable in column 4 consists
of the mean distance of within-MSA citations for all patents applied for in 1988 (and subsequently granted) that are in the same technology class but in different MSAs from the focal MSA. logHighway,, 193 refers to
the 1983 level of interstate highway kilometers in the MSA. The endogenous variable logHighway,, 1983 is instrumented with logHighwayPlan,, 1947, l0gRail,, 1898, and logExplorationIndex,,. Inventor controls include
the log of the number of inventors in the MSA class in 1973, 1978, and 1983 and the total number of inventors in the MSA in 1983. Geography controls include the share of each MSA’s land that overlays an aquifer,
MSA elevation, index of MSA terrain ruggedness, and number of MSA heating and cooling degree days. We add a 1 to all inventor count variables before taking the log to include observations with values of 0. We
cluster robust standard errors at the MSA level and present them in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01.

instrument highways with the historical measures and clus-
ter standard errors at the MSA level. All regressions control
for two-digit technology effects of the citing patent, the cited
patent, and grant year effects of the cited patent. Because of
the introduction of these dummy variables, the sample drops
to 9,141 observations since some patents cannot be mapped
to two-digit NBER classifications. We include controls for
geographic characteristics of the MSA in column 2. In col-
umn 3, we control for the number of MSA inventors. Across
all specifications, we find a strong, positive effect of trans-
portation infrastructure on the distance between a patent and
its local citations. The marginal effect in column 3 indicates
that a 10% increase in highway stock increases the distance
of local citations by 0.85%.

A possible interpretation is that the presence of a large
highway stock disproportionately attracts inventors from
technology fields that benefit less from close locations. To
address this concern, we exploit our data to run a placebo
test. Consider a local citation in our sample from patent p
belonging to technology field c¢; to patent g in technology
field c,. For each citation, we identify local citations made
by other 1988 patents in field c; to patents in technology field
¢, which are located in other MSAs, and compute the aver-
age citation distance. In column 4, we estimate the effect
of highways on the distance of citations by patents in the
same technology field but located in different MSAs. The
coefficient is small and statistically insignificant. This exer-
cise shows that the (instrumented) highway stock variable
is uncorrelated with distance at the technology-class level
and confirms the exogeneity of the historical transportation
infrastructure.

As a second approach, rather than estimating the effect
of roads on the distance between inventors and their local
inputs, we hold constant the distance and examine the extent
to which the probability of a citation between inventors
rises with increasing transportation infrastructure. To do
this, we use the empirical methodology developed by Jaffe
et al. (1993), which has become a classic approach in the

economics-of-innovation literature. The idea is to compare
the characteristics of local patents cited by 1988 patents and
a control group of noncited local patents of the same cohort.
We construct the control group as follows. For each local
citation, we randomly select another local patent that is not
cited by the focal patent but has the same application year
and three-digit patent classification. Following Jaffe et al.
(1993) and Belenzon and Schankerman (2013), we run a
series of linear probability models that relate a dummy vari-
able for whether a patent is cited to a set of control variables.
The specification is

CitationDummy,,; = a + B log Highway,, 1083

+ B2 log Distancepy + 0Xpgm + €pgms
)

where CitationDummy is an indicator variable that equals
1 if patent p from MSA m cites patent g also located in
MSA m. The additional controls, X, include dummies for
the technology field of the focal patent, dummies for the
tech field, and grant year of the cited/control patents.

We report the estimates of these regressions in table 8.
Across all specifications, we find a strong, significant nega-
tive association between distance and the citation dummy.
This result confirms the findings in Jaffe et al. (1993)
and Belenzon and Schankerman (2013) and is typically
interpreted as evidence that knowledge spillovers are geo-
graphically bounded. In columns 1 and 2, we also document
a positive association between citation and the local stock of
highways. Notice that by construction, the rough correlation
between the MSA highway stock and the citation dummy
is 0 in our sample. The positive coefficient on MSA high-
way in column 1 indicates that, conditioning on the distance
between two inventors located in the same MSA, a citation
is more likely when the stock of highways in the region is
greater. In column 2, we show that the correlation between
highways and citations decreases in magnitude when we con-
trol for the size of innovative activity in the region (i.e., the
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TABLE 8.—ROADS INCREASE THE PROBABILITY OF BUILDING ON LOCAL
KNOWLEDGE: PATENT-LEVEL ANALYSIS
Dependent Variable: 1(Citation,,)

@ (2) 3) “

Estimation OLS v
logHighwaym, 1983 0.030**  0.006™* 0.035**  0.008**

(0.009) (0.003) (0.009) (0.004)
logDistance —0.077%* —0.083*** —0.078*** —0.083***

(0.012) (0.013) (0.012) (0.013)
Citing patent class effects v v v v
Cited patent class effects v v v v
Cited patent year effects v v v v
Inventor controls v v
Geography controls v v
Observations 18,282 18,282 18,282 18,282
R? 0.038 0.041 0.038 0.041
F-statistic 45.45 8.36

The unit of analysis for all specifications is the citing patent p—cited patent ¢ dyad. Columns 1-2 and
3—4 are estimated by ordinary and two-stage least squares, respectively. The sample consists of all citations
made to patents in the same MSA by patents applied for (and subsequently granted) in 1988. For each
realized citing-cited patent dyad, we also identify a control cited patent that has the same application
year and three-digit USPTO technology classification as the realized cited patent but was not cited by the
focal citing patent. The dependent variable is a dummy set to 1 if the citing patent—cited patent dyad is a
realized citation and 0 if the citing patent—cited patent dyad is a control dyad. By construction, the mean
of Citation is 0.5. logHighwayogs refers to the 1983 level of interstate highway kilometers in the MSA.
The endogenous variable logHighway,, 1983 is instrumented with logHighwayPlan,, 1947, logRail,, 1303, and
logExplorationindex,,. logDistance refers to the distance in kilometers between the first inventors of the
citing and cited patents. Inventor controls include the log of the number of inventors in the MSA class in
1973, 1978, and 1983 and the total number of inventors in the MSA in 1983. Geography controls include
the share of each MSA’s land that overlays an aquifer, MSA elevation, index of MSA terrain ruggedness,
and the number of MSA heating and cooling degree days. We add a 1 to all inventor count variables before
taking the log to include observations with values of 0. We cluster robust standard errors at the MSA level
and present them in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01.

number of inventors in the MSA in 1983-1978-1973) and
MSA geography characteristics. Nonetheless, the coefficient
remains statistically significant at the 0.05 level. In columns
3 and 4, we exploit our historical instruments to address
the potential endogeneity of the highway stock. Results are
robust, confirming the positive effect of transportation infras-
tructure on local knowledge flows. The estimates in column
4 imply that a 10% increase in highway stock increases
the citation probability by 0.08 percentage points, which is
0.16% of the mean citation probability.8

We also exploit a different approach that builds on the
methodology developed in Duranton and Overman (2005)
and Akcigit and Kerr (2010) to examine how the distance
between local citations departs from random counterfactuals.
More specifically, we undertake Monte Carlo simulations,
where we construct a series of random citations between the
patents in each MSA class. For each observed local citation
in which patent p from MSA m cites patent g (also located in
MSA m), we draw two local patents p’ and ¢’ with the same
application years and technology classes of the citing pair.
We include the original citation among the possible pool of

8 We confirm the robustness of these findings in a variety of unreported
regressions. First, following Belenzon and Schankerman (2013), we replace
the distance measure with a flexible specification that employs five dummy
variables for quintile intervals of distance. The coefficient remains very
similar to the one reported in column 4 of table 8. Second, we confirm robust-
ness to introducing socioeconomic controls and census division dummies.
Third, we find that the effect is larger (almost double) if we drop patents
from MSAs without highway stock. Fourth, we show that results are qualita-
tively and quantitatively similar when we replace the highway measure with
the alternative lane-weighted measure developed by Duranton and Turner
(2012).
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local citations and draw with replacement. We measure from
this simulated counterfactual the average distance between
local citations in the MSA class and repeat this procedure
1,000 times.

Appendix table B.6 uses these simulations to provide addi-
tional evidence in support of our findings. First, the table
shows that the mean distance between local citations in our
data increases with the stock of interstate highway in the
MSA. Second, it shows that the observed distance between
a patentee and his local citation is on average below the
distance between simulated citations. This supports the idea
that geography constrains the flow of knowledge and that
the observed citation behavior is not randomly determined.
The differences, reported in the third column of the table,
are statistically significant at the 0.01 level. That column
also shows that the average difference between observed
and simulated distances decreases with the stock of inter-
state highways. This finding confirms the idea that roads
facilitate local circulation flows. As the stock of transport
infrastructure increases, local citation patterns appear less
constrained by geography and their behavior becomes more
similar to a random diffusion process.?

B. Heterogeneous Effects and Interpretation

Overall, the results in tables 5 to 8 provide direct evi-
dence that transportation infrastructure affects the flow of
local knowledge and facilitates citations among local inven-
tors. In this section, we present further indirect evidence that
local roads increase local knowledge flows by reducing the
cost of interaction among innovators.

The reduction in travel time generated by transportation
infrastructure is likely to be more valuable for technolo-
gies where the frontier shifts quickly. In such cases, direct
access to the source of new knowledge is especially bene-
ficial. Therefore, we expect roads to have a greater impact
on innovation in fields characterized by fast technological
turnover. Caballero and Jaffe (1993), Hall et al. (2001),
and Mehta, Rysman, and Simcoe (2010) exploit the citation
age-profile of patents to measure the speed of technol-
ogy obsolescence. These studies show that in all industries,
old knowledge eventually is made obsolete by the emer-
gence of newer, superior knowledge, but in two industries,
technological turnover is much faster than the rest: the com-
munication and computer industry and the electrical and
electronics industry. We label these technology classes as
high-velocity technologies and contrast them with the other
low-velocity technologies in split-sample regressions pre-
sented in columns 1 and 2 of table 9. The estimates show
that the impact of highways is concentrated on high-velocity

9We also use the 1,000 simulated counterfactual citations generated
through the Monte Carlo simulation to construct 95% confidence bands
for the distance between cited and citing local patent. We can reject random
behavior for more than 50% of local citations in MSAs in the first tercile for
highway stock. The fraction decreases to 40% in the second tercile and to
22% in the third tercile. This confirms the idea that transport infrastructures
render local knowledge flow less constrained by distance.
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TABLE 9.—R0ADS HAVE THE BIGGEST IMPACT ON CITATIONS WITH
HiGH-VELOCITY TECHNOLOGIES AND WHEN STARS LIVE IN THE MSA
Dependent Variable: logCites,, 1933

THE REVIEW OF ECONOMICS AND STATISTICS

TABLE 10.—R0ADS HAVE THE BIGGEST IMPACT ON CITATIONS IN
Low-DENSITY MSAS AND THE ACTIVITY OF SMALL FIRMS
Dependent Variable: logCites,, ¢ 1933

(1) ) (3) (4) (1) 2 3) 4)
Sample Low-Velocity High-Velocity MSAs MSAs Sample Low-Density High-Density =~ Small Large
Classes Classes without Stars with Stars MSAs MSAs Firms Firms
logHighway,, 1983 0.178 0.633** 0.219 0.358** logHighwayy, 1983 0.411%* 0.189 0.367***  0.158
(0.161) (0.263) (0.274) (0.154) (0.126) (0.133) (0.106) (0.102)
Class fixed effects v v v v Class fixed effects v v v v
Inventor controls v v v v Inventor controls v v v v
Geography controls v v v v Geography controls v v v v
Population controls v v v v Socioeconomic controls v v v v
Observations 572 242 307 507 Observations 370 444 814 814
R? 0.731 0.696 0.422 0.757 R? 0.599 0.811 0.704 0.719
F-statistic 12.13 9.13 10.46 10.73 F-statistic 38.56 16.78 21.82 21.11

All specifications are estimated by two-stage least squares and control for the lagged dependent variables
evaluated in 1983. logCites,, ., refers to the citation-weighted count of patents applied for (and subsequently
granted) in period ¢ for MSA m in class c. Using the Hall et al. (2001) NBER technology categories, we
classify the Chemicals, Drugs & Medical, Mechanical, and Other categories as low velocity and the
Computer & Communications and Electrical & Electronic categories as high velocity. In addition, we
identify all inventors above the 90th percentile in the citation-weighted patenting distribution of the focal
technology class in 1983. Columns 3 and 4 include all MSA classes that do not have any stars and those that
do, respectively. logHighway,, 1033 refers to the 1983 level of interstate highway kilometers in the MSA.
The endogenous variable logHighway,, 1033 is instrumented with logHighwayPlan,, 1947, l0gRail,, 1393, and
logExplorationIndex,,. For MSA regressions, Inventors controls include log of the inventors in the MSA
in 1973, 1978, and 1983. For MSA class regressions, Inventor controls include the log of the number of
inventors in the MSA class in 1973, 1978, and 1983 and the total number of inventors in the MSA in 1983.
Geography controls include the share of each MSA’s land that overlays an aquifer, MSA elevation, index
of MSA terrain ruggedness, and number of MSA heating and cooling degree days. Population controls
include the log of the MSA’s population in 1920, 1930, 1940, 1950, 1960, and 1970. We add a 1 to all patent,
citation, and inventor count variables before taking the log to include observations with values of 0. We
cluster robust standard errors at the MSA level and present them in parentheses. *p < 0.10, **p < 0.05,
##kp < 0.01.

technologies. Our findings imply that a 10% increase in
1983 interstate highways has no effect on innovation in
low-velocity fields but generates a 6.3% increase in citation-
weighted patents in the high-velocity fields of computers and
electronics.10

A well-known feature of science is that the distribution
of output is highly skewed across scientists and inventors in
the right tail of the output distribution. Stars have dispro-
portionately large knowledge spillover effects (Agrawal et
al., 2017). This suggests that highways should have a larger
impact on innovation in the presence of star inventors. To
explore such heterogeneity, we construct a measure of the
number of star inventors in each MSA class. We define a
star inventor as an inventor above the 90th percentile in the
patenting distribution of the technology class in year 1983.
On average, an MSA class has roughly seven star inventors,
but about 38% of the MSA classes do not have any star inven-
tors. In columns 3 and 4 of table 9, we show that the impact
of highways on innovation differs dramatically depending on
the presence of star inventors in the MSA class. The regres-
sions indicate a larger effect of transportation infrastructure
on patent productivity for inventors located in regions where
at least one star is active in the technology class.

We expect the impact of transportation infrastructure to
depend on how densely populated a region is. Controlling for

10This is consistent with the simple model described in section IV in
which high velocity can be interpreted as a low value of the parameter
y. When vy is small, past patenting outcome has a low impact on current
patenting levels, and reversion to steady-state knowledge production is fast.
The simple model suggests that the impact of highways on innovation will
be larger for high-velocity technology fields because f = a(l —y).

All specifications are estimated by two-stage least squares and control for the lagged dependent vari-
ables evaluated in 1983. logCites,, ., refers to the citation-weighted count of patents applied for (and
subsequently granted) in period ¢ for each MSA class. Columns 1 and 2 include MSAs that are below
and above the mean inventor density (W), respectively. Column 3 includes only patents pro-
duced by small firms (below the 75th percéﬂ’lile of the firm-size distribution; approximately five or
fewer inventors). Column 4 includes patents produced by large firms (above the 97th percentile of the
firm-size distribution; approximately 54 or more inventors). Both firm-size constructions follow Agrawal
et al. (2014). logHighway,, 1933 refers to the 1983 level of interstate highway kilometers in the MSA.
The endogenous variable logHighway,, 1983 is instrumented with logHighwayPlan,, 1947, logRail,, 1303, and
logExplorationIndex,,. For MSA regressions, Inventor controls include the log of the number of inventors
in the MSA in 1973, 1978, and 1983. For MSA class regressions, Inventor controls include the log of
the number of inventors in the MSA class in 1973, 1978, and 1983 and the total number of inventors
in the MSA in 1983. Geography controls include the share of each MSA’s land that overlays an aquifer,
MSA elevation, index of MSA terrain ruggedness, and number of MSA heating and cooling degree days.
Socioeconomic controls (from the 1980 Census) include the share of the poor population in the MSA, the
share of college graduates, the share of population employed in manufacturing, mean income in the MSA,
and a measure of housing segregation computed by Cutler and Glaeser (1997). We add a 1 to all patent,
citation, and inventor count variables before taking the log to include observations with values of 0. Robust
standard errors clustered at the MSA level are in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01.

the number of inventors in a region, we expect highways to
have a larger impact on innovation in regions where inventors
are more spread out (“low density”’) because in such regions,
interaction requires traveling a longer distance. In columns
1 and 2 of table 10, we present split-sample regressions
distinguishing between technology classes in high- and low-
density MSAs. We classify an MSA as “high density” if its
ratio of inventors per square mile is above the sample mean.
The estimates show that the impact of highways is concen-
trated in low-density MSAs, suggesting that transportation
infrastructure provides greater benefit to knowledge flows
when local interaction among innovators requires substantial
traveling.!!

Finally, the impact of transport infrastructure may also
differ across firms of different size. In particular, large firms
may be less sensitive to highway provision because they gen-
erate more inventions internally and are thus more likely to
circulate knowledge within their boundaries and less likely
to rely on knowledge flows from their neighbors. To assess
such heterogeneity, in columns 3 and 4 of table 10, we dis-
tinguish between the patenting activity of large and small
labs. We construct lab size following Agrawal et al. (2014),
who exploit the distribution of lab sizes in each technology
class. In a twenty-year sample, they show that across the

I From a theoretical perspective, the relationship between density and
highways is nonlinear. In a simple model of productive interaction with
transportation costs, the marginal impact of extra roads is larger in regions
that are more densely populated when the stock of roads is low. Nonetheless,
the model predicts a larger impact of roads in low-density regions when the
stock of roads is large enough.
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various class-years, the median size is about 5 inventors, the
75th percentile is about 9 inventors, and the 97th percentile
is roughly 54 inventors. We use this distribution to define
large and small labs. A large lab is a lab where the number
of inventors is above the 97th percentile in the technology
class-year distribution. We define a lab as small if the num-
ber of inventors is below the 75th percentile. The regressions
show a positive highway effect on small firm innovation and
no effect on large lab innovation. This suggests that large
firms may have an advantage in accessing local knowledge
and that the impact of roads on knowledge flows is largely
through between-firm rather than within-firm flows.12

Overall, these findings indicate that certain regional char-
acteristics are important determinants of the relationship
between transportation infrastructure and innovation. The
heterogeneity that we examine suggests that an important
mechanism driving innovation and growth is the greater cir-
culation of local knowledge caused by the presence of roads.
Of course, other factors can also affect the impact of roads on
innovation. One is a growth in employment generated by an
influx of new workers. A second is a change in the trade pat-
tern across metropolitan areas. Duranton and Turner (2012)
and Duranton et al. (2013) provide evidence in support of
these two effects of transportation infrastructure.!3

Our findings are relevant to current policy debates on the
role of transportation infrastructure. Our estimates are con-
sistent with the assertion that highways have a meaningful
positive effect on economic growth. However, our results
also show that the effect can be very different across regions
and that the impact of highway provision crucially depends
on characteristics of the local environment such as technol-
ogy specialization, inventor quality, and the manner in which
regional R&D manpower is organized.

VII. Employment Growth versus Innovation

Duranton and Turner (2012) show that highways increase
regional employment. Perhaps this channel explains a large
fraction of the effect we document in our paper. Our goal
in this section is to disentangle the two effects of roads
(employment growth, also referred to as agglomeration
economies, versus patenting, a proxy for innovation) through
a simple calibration of a theoretical model. A calibration
exercise is a natural approach in our setting because the
impacts of roads on innovation and employment growth
are jointly determined and to distinguish the two effects
empirically is challenging.

12 We also run a number of split-sample regressions that explore hetero-
geneity across MSAs of different size. We find very little difference in the
impact of roads across cities of different sizes.

13We also explore whether the effect of highways is driven by better
matches between inventors and firms through job hopping. We measure
within-MSA inventor moves following Agrawal et al. (2014) and find evi-
dence that highways cause an increase in job hopping. We also show that our
baseline results are robust to controlling for this measure of job hopping. We
leave for future research the study of the impact of transport infrastructure
on R&D labor reallocation.
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Before developing the theoretical model, we run a number
of regressions to provide support for the idea that the effect
we estimate cannot be entirely explained by the increase in
employment documented in Duranton and Turner (2012).
Estimates are presented in appendix table B.7. We show that
the effect of highways is only marginally reduced once we
control for the growth rate of employment, population, and
inventors in the 1980s. These estimates should be interpreted
with caution because of the obvious endogeneity of these
variables. Nevertheless, they suggest that the effect of inter-
state highways on innovation is unlikely to be entirely driven
by an increase in MSA-level employment.

A. Calibration of an Urban Economy Model

We follow Kline and Moretti (2014) and model an MSA as
a small, open economy where firms take as given the prices
of capital K, labor L, and output Y. The utility of workers
is a function of wages w and amenities M that takes the
following specification:

Uw,M)=Inw+1nM. (@)

Output is produced with a Cobb-Douglas technology,
Y = AK*FPL'™ P,

where F' is a fixed factor and A is total factor productivity.
We assume capital to be perfectly mobile. If we normalize
the price of Y to 1 (sold on global market) and denote with
r the (nationwide) cost of capital and with w the wage, the
model implies the following inverse labor demand curve,

1nw=®—L1nL+
l—«a

InA, 5)

l—«a

where ® =In(1 —f —a)+(alna+pfInF—alnr)/(1—a).
We assume that the total factor productivity depends on two
variables, patents, P, and labor, L, according to the following
specification:

InA=¢tInP+olnL. (6)

Parameter o captures the strength of agglomeration
economies, a concept studied and documented in the urban
economics literature (Rosenthal & Strange, 2004; Duranton
& Turner, 2012; Kline & Moretti, 2014). The parameter ¢
describes the impact of patenting on productivity, a concept
studied and documented by innovation economists (Bloom
& Van Reenen, 2002; Furman, Porter, & Stern, 2002).

Our reduced-form analysis, together with the findings of
Duranton and Turner (2012), indicate that both P and L are
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affected by the provision of roads R. We incorporate this
effect by assuming a simple (reduced-form) specification for
patenting and labor supply with roads as the only input:

L = bR", @)
P =aR". (8)

These simple functional forms are sufficient to high-
light the differential impact of roads on productivity
through agglomeration and innovation channels. Moreover,
by assuming that labor supply depends only on roads, the
impact of roads on wages can be interpreted as a welfare
effect without having to specify a worker migration model.
Duranton and Turner (2012) explain that typically migration
models with sticky labor adjustments lead to reduced form
equations similar to equation (7). In the appendix, we extend
the model by incorporating additional inputs in the patent
production function, equation (8), as well as by relaxing the
inelastic labor supply function, equation (7), by introducing
more structure in the workers’ migration process.

Combining the above formulas, we obtain

o
11—«

dlnw B o
dlnR 1-«

l—a ’
which decomposes the impact of roads on wages into a com-
petitive effect (negative term) and a productivity effect (pos-
itive term) that arises from the impact of roads on patenting
and an additional agglomeration effect. Specifically, roads
have three distinct effects on wages. First, they attract labor,
which reduces wages. Second, they facilitate knowledge
flows, which lead to greater patenting and higher produc-
tivity that increases wages. Third, they increase productivity
through agglomeration, which increases wages.14

Our regression estimates, together with those of Duranton
and Turner (2012), provide natural structural estimations for
= 0.15 and 6 = 0.24. Following Kline and Moretti (2014),
we set B = 0.47 and o = 0.68. We obtain the elasticity of
TFP with respect to patents, ¢, from Furman et al. (2002)
that estimate ¢ = 0.11. Exploiting these parameters, we can
rewrite

dlnw
dInR

=—0.2240.08 + 0.470c.

This shows that the impact of roads on wages crucially
depends on the strength of agglomeration forces. For exam-
ple, in the absence of agglomeration economies (o = 0),
the model would predict a road elasticity of wages equal
to —0.14. Estimates in the literature range from ¢ = 0.03
(Henderson, 2003) to o = 1.25 (Greenstone, Hornbeck, &
Moretti, 2010), which imply elasticities of —0.13 and 0.45,
respectively.

141n this simple model, the combination of these three effects is also
equal to the impact of roads on welfare if road construction is not costly.
This equivalence does not hold in the extensions where more structure is
imposed on the migration process.

THE REVIEW OF ECONOMICS AND STATISTICS

Duranton and Turner (2012) estimate a labor elasticity
of wages equal to 0.03 that, combined with their estimate of
p = 0.15, implies a road elasticity of wages equal to 0.2 and
a corresponding o = (.72 that is roughly in the middle of
the estimates in the literature. As illustrated in table 11, with
this parameterization for o, we find that the total productivity
effect is 0.42 and that the patenting channel accounts for 19%
of this effect.

In table 11, we also illustrate the decomposition in three
extensions of the baseline model. We discuss the details of
each model in the appendix. In the first extension, we relax
the inelastic labor supply function, equation (7), microfound-
ing the workers’ migration process. Following Duranton and
Turner (2012), we assume a pool of people in the rural area
receives utility U and that cities draw their new workers
from this rural pool. Duranton and Turner (2012) explain
how this assumption is consistent with U.S. data showing
that most immigration to cities is drawn from rural areas
and from abroad. We also extend equation (4) to allow roads
to increase the attractiveness of a city by reducing travel
Ccosts:

Uw,M,R)=Inw+1InM +tInR.

In this model, migration occurs until utility between res-
idents and nonresidents is equalized. The positive impact
that roads have on the utility of residents is compensated
by a reduction in wages triggered by migration. Calibration
of this model leads to a lower estimate for the productivity
effect with patenting explaining 50% of it.

The second extension considers an alternative patent pro-
duction function, equation (8), allowing labor, L, to affect
patenting. Specifically, we assume

InP=6InR+ X\InL.

Combining this formula with equations (7), (6), and (5), we
obtain a slightly stronger patenting effect that now explains
21% of the productivity effect.

The final extension combines the migration process with
the alternative patent production function. The role of patent-
ing is even more pronounced in this setting because of the
lower impact of agglomeration economies in the migration
model. The estimates imply that 56% of the productivity
effect is due to patenting.

These calculations are only illustrative and should not
be overinterpreted. Our model does not consider a number
of additional channels through which highways can affect
urban growth, such as their impact on the matching process
between firms and workers or on the within-city movement
of goods and services. Nonetheless, the estimates show that
roads may affect productivity through multiple channels and
that nonagglomeration forces may explain an important frac-
tion of the productivity gains generated by transportation
infrastructure.
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TABLE 11.—STRUCTURAL DECOMPOSITION OF THE IMPACT OF ROADS ON LABOR PRODUCTIVITY

Productivity Effect

Road Elasticity Competitive Productivity Explained by Innovation
Model of Wages Effect Effect (percent)
Baseline 0.20 —0.22 0.42 19
Migration —0.06 —0.22 0.16 50
Inventors 0.20 —-0.22 0.42 21
Migration + inventors —0.06 —-0.22 0.16 56

The table presents the estimates from three alternative structural models decomposing the impact of roads on wages through their interaction with labor competition and labor productivity. The last column indicates

the percentage of the productivity effect explained by greater innovation (as opposed to labor agglomeration).

VIII. Conclusion

We estimate the causal effect of within-MSA interstate
highways on regional innovation. The identification strat-
egy exploits variation in historical data on planned portions
of the interstate highway system, railroads, and exploration
routes. There are two key findings. First, in terms of the
magnitude of the main effect, a 10% increase in a region’s
stock of highways causes a 1.7% increase in regional innova-
tion growth over a five-year period. Second, in terms of the
mechanism, transportation infrastructure facilitates the flow
of local knowledge by lowering the cost and thus increasing
the returns to accessing local knowledge inputs from neigh-
bors located farther away. This finding suggests that roads
may spur regional growth even in the absence of agglomer-
ation economies that arise from the inflow of new workers,
the mechanism typically considered in the literature.

Our findings have implications for policymakers. They
suggest that the tools available to spur regional innova-
tion are much broader than targeted R&D subsidies and
tax credits and may include the provision of infrastructure
that facilitates the flow of knowledge. Our analysis also
suggests that the returns to particular regional innovation
policies (e.g., new venture incubators, science parks, tech-
nology clusters) may vary across regions and depend on the
availability of transportation infrastructure.
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